Closing today: 3.10
Closing Mon: $\quad 4.1(1)$ and 4.1(2)
Closing Wed: 4.3

Entry Task: (directly from homework)
Find the critical numbers for

$$
y=x^{3}+3 x^{2}-72 x
$$

4.1: Max/Min

Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
When encountering a function always ask:

1. What is the domain?
2. What are the "critical numbers"?

A critical number is a number $x=a$ that is in the domain and either
(a) $f^{\prime}(a)=0$, or
(b) $f^{\prime}(a)$ does not exist.

Example:

1. $f(x)=4 x+\frac{1}{x}$
a) What is the domain?
b) What are the critical numbers?
2. $g(x)=3 x-x^{1 / 3}$
a) What is the domain?
b) What are the critical numbers?

Peaks and valleys?
The absolute max (or global max) is the highest overall point.
The absolute $\mathbf{m i n}$ (or global min) is the lowest overall point.

Big huge key awesome observation:
(Extreme Value Theorem)
Absolute max/min always occur at critical numbers or endpoints!

Easy procedure to answer ALL absolute max/min questions:

1. Find critical numbers.
2. Plug endpoints and critical numbers into the function.

Example: (like homework)

1. Find the absolute max and min
of $f(x)=x^{3}+3 x^{2}$ on the interval [-1,2].

Small Note: The value of a function, $y=f(x)$, is the output y-value. A question asking for the absolute max of a function is asking for the y-value.
2. Find the abs. max and min
of $f(x)=x \ln (x)$ on the interval [1,e].
3. Find the absolute max and min of $f(x)=x \sqrt{1-x}$ on the interval $[-1,1]$.
4.3 Classifying Critical Points

Recall:

$\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{y}^{\prime}=\boldsymbol{f}^{\prime}(\boldsymbol{x})$
horiz. tangent	zero
increasing	positive
decreasing	negative
vertical tangent, sharp corner, or not continuous	does not exist

Key, big, essential observation
Let $y=f(x)$ have a critical number at $x=a$; if $f^{\prime}(x)$ changes from...

1. ...positive to negative, then a
local maximum occurs at $x=a$.
2. ...negative to positive, then a
local minimum occurs at $x=a$.

This is called the first derivative test.
2. Find and classify the critical numbers of

$$
y=x^{4}-2 x^{3}
$$

3. Find and classify the critical numbers of

$$
y=x^{2 / 3}
$$

4. Find and classify the critical numbers of

$$
y=\frac{x^{3}}{x^{2}-1}
$$

