Closing today:3.10Closing Mon:4.1(1) and 4.1(2)Closing Wed:4.3

4.1: Max/Min

Let y = f(x). When encountering a function always ask:

- 1. What is the domain?
- 2. What are the "critical numbers"?
 A critical number is a number x = a that is in the domain and either
 (a) f'(a) = 0, or
 (b) f'(a) does not exist.

Entry Task: (directly from homework) Find the critical numbers for $y = x^3 + 3x^2 - 72x$ Example:

1.
$$f(x) = 4x + \frac{1}{x}$$

- a) What is the domain?
- b) What are the critical numbers?

2.
$$g(x) = 3x - x^{1/3}$$

a) What is the domain?

b) What are the critical numbers?

Peaks and valleys?

The **absolute max** (or global max) is the highest overall point. The **absolute min** (or global min) is the lowest overall point.

Big huge key awesome observation:

(Extreme Value Theorem) Absolute max/min always occur at critical numbers or endpoints!

Easy procedure to answer ALL absolute max/min questions:

- 1. Find critical numbers.
- 2. Plug endpoints and critical numbers into the function.

Example: (like homework) 1. Find the absolute max and min of $f(x) = x^3 + 3x^2$ on the interval [-1,2]. Small Note: The value of a function, y = f(x), is the output y-value. A question asking for the absolute max of a function is asking for the y-value.

3. Find the absolute max and min of $f(x) = x\sqrt{1-x}$ on the interval [-1,1].

2. Find the abs. max and min of $f(x) = x \ln(x)$ on the interval [1,e].

4.3 Classifying Critical Points

Recall:

y = f(x)	y' = f'(x)	
horiz. tangent	zero	
increasing	positive	
decreasing	negative	
vertical tangent,		
sharp corner, or	does not exist	
not continuous		

Example:

1. Find and classify the critical numbers for

$$y = x^3 + 3x^2 - 72x$$

Key, big, essential observation

Let y = f(x) have a critical number at

- x = a; if f'(x) changes from...
- 1. ...positive to negative, then a **local maximum** occurs at x = a.
- 2. ...negative to positive, then a **local minimum** occurs at x = a.

This is called the <u>first derivative test</u>.

2. Find and classify the critical numbers of

$$y = x^4 - 2x^3$$

3. Find and classify the critical numbers of

$$y = x^{2/3}$$

4. Find and classify the critical numbers of

$$y = \frac{x^3}{x^2 - 1}$$